COURSE CODE COURSE NAME CREDIT HOURS	MATH-108 DIFFERENTIAL EQUATIONS Theory: 03 Practical: 00 Total: 03
CONTACT HOURS	Theory: 48 Practical: 00 Total: 48
PREREQUISITE	(It is a Pre-requisite course for GIE-342 GIS Applications and GIE-414 Land use Planning)

MODE OF TEACHING:

Two hours of lecture per week 100%

COURSE DESCRIPTION:

The course reviews the concepts of basic calculus, including matrices, first order differential equations, second order differential equations and partial differential equations.

COURSE OBJECTIVES:

This course encompasses the basic mathematical concepts related to differential equations, describe different types of analytical methods for solution of differential equations, and formulate different engineering problems in the form of differential equations

RELEVANT PROGRAM LEARNING OUTCOMES (PLOs):

The course is designed so that students will achieve the PLOs:

1	Engineering Knowledge	\checkmark	7	Environment and Sustainability	
2	Problem Analysis		8	Ethics:	
3	Design/Development of Solutions		9	Individual and Teamwork	
4	Investigation		10	Communication	
5	Modern Tool Usage		11	Project Management	
6	The Engineer and Society		12	Lifelong Learning	

COURSE LEARNING OUTCOMES:

No.	CLO	Domain	Taxonomy Level	PLO
1	Use ordinary differential equations and optimum methods to solve linear systems	Cognitive	3	1

TOPICS COVERED: Theory:

Week	Торіс
	Basic Concepts and Modeling: Linear Differential equations, Non-Linear,
1-2	Differential equations, Solutions of differential equations, General solutions,
	Particular solutions,
	Initial and boundary value problems, Degree, and order of ODEs, Formulation
	of first-order ODEs: Case studies related to finding age of fossils, mixing
	problems and free fall motion, finding temperature of a building, RL, RC
	circuits, Airplane take-off problem, Population
	dynamics and logistic equations etc.
	Analytical Methods of Solution for First-order ODEs: Variable separable
	method, Reduction to variable separable form, Homogeneous equations,
3-4	Differential equations reducible to homogeneous form, Solution of the related
	ODE models by these methods, Exact equations, Integrating factors, Linear
	equations and related examples, Bernoulli's equations, Orthogonal
	trajectories, and solution of the related ODE models by these methods. Mathematical Models Based on Second-order ODEs: Formulation of a
5-6	single RLC circuit, Spring mass systems, Earthquake model of a single-story
5-0	building, Bungee Jumper model, Bridge collapse problem etc.
	Analytical Methods of Solution for Second-order ODEs: Homogeneous
	linear ODEs, Method of reduction order, Wronskain determinant to check
	independence of the solution, and related examples, Cauchy-Euler equations
7-8	and related examples, non-homogeneous linear ODEs, Method of
	undetermined coefficients, Method of variation of parameters and related
	example, Analytical solution of the related ODE models by these methods
	Series Solution for Second-order ODEs: Series solution of ODEs and
9-10	convergence tests, Series solution of Legendre equation, Frobenious method
	of solution for Bessel equation and related applications
	Laplace Transform: Laplace Transform, Derivation of Basic formulae,
	Inverse Laplace Transform, first shift theorem, Laplace transform of integrals
11-12	and derivative, Solution of second order ODEs by Laplace Transform, Unit
	step function and its Laplace transform, second shift theorem, Convolution,
	Application of Laplace transform to a system of ODEs and related applications
13-15	Partial Differential Equations: Partial Differential Equations and their types,
	Applications of partial differential equations in Engineering, Method of
	Separation of Variables Method (MSVM) and solution of wave equation by the
	MSVM, Method of Separation of Variables Method (MSVM) and solution of
	heat equation by the MSVM
16	ESE

TEXT AND MATERIAL:

Textbook (s)/ References Material: 1. Advanced Engineering Mathematics by Erwin Kreyzig, John Wiley &Sons Inc. Latest Edition

- 2. A First Course on Differential Equations with Modelling Applications by D. G. Zill, Latest Edition, Brooks/Cole Publishers.
- Differential Equation with Boundary Value problems by D. G. Zill, M. R Cullen Latest Edition, Brooks/Cole Publishers.
- 4. An Introduction to Mathematical Modelling by Bender, E.A., Latest Edition, Wiley, New York

ASSESMENT SYSTEM:

1. CLOs Assessment

Cognitive	Psychomo	tor Affective		
Spreadsheet	-	-		
2. Relative	Grading		_	
Theoretical/Ins	struction			100%
		Assignme	nts10%	
Quizzes10%				
		OHT Exa	ms30%	
		End Semeste	r Exam50%	
Total				100%